{ESP: Path-Sensitive Program Verification in
Polynomial Time) Review

Paper Info
ESP: Path-Sensitive Program Verification in Polynomial Time Manuvir Das, Sorin Lerner, Mark Seigle
Major Contribution

The authors present a new algorithm for partial program verfication that can run in polynomial time and
space. Previous work on partial verification has only focused on path-sensitive analysis methods, which
limits the applicability to large programs.

The authors propose "property simulation" based on the heuristic that a branch is likely to be relevant only
if the property FSM transitions to different states along the arms of the branch. This method avoids
exponential blowup and only captures relevant branching behavior. This is the major contribution of this
research paper, and the core insight and algorithm make this work state of art.

Main Work

The authors present property analysis, a general framework for tracking property states and execution
states using path-sensitive dataflow analysis. The framework consists of two parts: intra-procedural
property analysis and inter-procedural property analysis.

Intra-procedural property analysis

The intra-procedural property analysis in this paper is based on the traditional waiting-list algorithm in the
dataflow analysis.

af://n0
af://n2
af://n4
af://n7
af://n9

global

1 Worklist : 2V
2 Info:E —25
procedure Solve(CFG = [N, E])
begin
3 for each e € E do Info(e) := {}
4 Info(Outy (Nentry)) := {[$uninit, T]}
5 Worklist := {dst(outy(nentry))}
6 while Worklist # () do
7 Remove a node n from Worklist
8 switch(n)
9 case n € Merge:
10 58 = Finrg(n, Info(Ing (n)), Info(In; (n)))
11 Add(Qutr(n), ss)
12 case n € Branch:
13 sst = Fy,.(n, Info(Ing(n)), true)
14 ssp = Fy(n, Info(Ing(n)), false)
15 Add(Qutr(n), sst)
16 Add(Outp(n), ssg)
17 case n € Other:
18 ss = Fou(n, Info(Ing(n)))
19 Add(Outy(n), ss)

20 return Info
end
procedure Add(e, ss)
begin
21 if Info(e) # ss then
22 Info(e) := ss
23 Worklist :== Worklist U {dst(e)}

end

The above algorithm is similar to the traditional data-flow framework. In this paper, the authors assume
that each merge point only has two predecessors, and each branch point only has two successors. Hence, in
the above algorithm, we only need to process two nodes when we encounter the merge points or branch
points.

Based on the intra-procedural property analysis framework, a framework for property simulation can be
easily implemented by chosing different domain of execution states and the join operations. In this paper,
the authors propose three different kinds of frameworks, including the fully path-sensitive analysis,
standard dataflow analysis and property simulation. Some examples are explained in the paper, and the
details of these three frameworks are fully illustrated.

Inter-procedural property analysis

The inter-procedural property analysis is a extension of the intra-procedural version through the use of
partial transfer functions or function summary edges. The algorithm framework is following.

af://n14

procedure Solve(Global CFG = [N, E, F])
begin
for each [f,d] € F x E do Summary(f,d) :=0
for each [e,d] € E x D do Info(e.d) =0
e := QOutr(entryNode(main))
Info(e, Suninit) := {[$uninit, T|}
Worklist := {[e, $uninit]}

Q0 =] O

9 while Worklist # () do

10 Remove a pair [n, d] from Worklist

11 switch(n)

12 case n € Call:

13 ssin = Info(Ing(n), d)

14 siaut =0

15 for each d' € D s.t. ssi,[d'] # 0 do

16 if Summary(callee(n), d’') # 0 then

17 SSout 1= SSout U Summary(callee(n), d')
18 AddTrigger(entryNode(callee(n)), d’, ss;, [d'])
19 Add(OQutr(n), d, cas(8Sout)

20 case n € Exit:

21 s5in = Info(Ing(n), d)

22 AddToSummary(n, d, ss;,,)

23 case n € Merge:

24 ssout = Fmrg(n, Info(Ing(n), d), Info(In; (n). d))
25 Add(Outy(n),d, s50ut)

26 case n € Branch:

27 ss = Fy.(n, Info(Ing(n), d), true)

28 ssg 1= Fye(n, Info(Ing(n), d), false)

29 Add(QOutr(n),d, ssT)

30 Add(Outp(n).d, ssp)

31 case n € Other:

32 ssout = Fau(n, Info(Ing(n), d))

33 Add(Outy(n),d, s50ut)

34 return Info
end

As shown above, the inter-procedural property analysis merges the information in the function summary
edges at the function call sites. The main part is similiar to the intra-procedural version.

In the evaluation section, the authors conduct some experiments on the gcc source code, and analyze the
validity of the usage of some file operations. The results demonstrate that property simulation has a good
performance both in the precision and efficiency.

Future Work

Some further exploration can be conducted in the future. Although the frameworks proposed in this paper
has a good scalability, the parallel algorithm has not been desiged in this work. There are many phases
which can be implemented in a parallel form, such as VFG construction and interface expression
computation. Meanwhile, some infeasible paths can be filtered when we encounter a branch node. Some
methods in the Pinpoint paper can be referred and applied to this work.

af://n19

	《ESP: Path-Sensitive Program Verification in Polynomial Time 》Review
	Paper Info
	Major Contribution
	Main Work
	Intra-procedural property analysis
	Inter-procedural property analysis

	Future Work

